Course Title:	Statistical Inference-II	
Course Code:	STAT-406	
Semester:	VIII	
Credit Hours:	3 Credit Hours	
Pre-requisites:	Statistical Inference-I	

Learning Outcomes

By the end of this course, students will be able to:

- 1. Learn different methods of estimation and their properties.
- 2. Get detailed insight on Interval estimation and its various methods.
- 3. Have sufficient knowledge of testing hypotheses under varied circumstances.

Course Outline

Unit 1

1.1 Methods of Estimation

Method of moments, Maximum likelihood method and its properties. Method of least squares and its properties. Ordered least squares estimation of location and scale parameters. Minimum chi-square method.

1.1 Interval estimation

Confidence interval and its interpretation. One-sided confidence intervals. Methods of finding confidence intervals. Pivotal quantity method. Confidence intervals for the mean and variance. Confidence region for the mean and variance. Large-sample confidence intervals. Bayesian interval estimates. Shortest sets of confidence intervals.

Unit 2

2.1 Tests of Hypotheses

Simple and composite hypotheses. Power function. Size and power of a test. Randomized and Non-randomized tests. Most powerful tests. Neyman-Pearson lemma. Loss function and Risk function. Bayes test. Generalized likelihood-ratio tests. Uniformly most powerful tests, unbiased test. Monotone likelihood ratio tests of hypotheses. Sequential probability ratio test. Approximate sequential probability ratio test. Average sample number.

• Teaching-learning Strategies:

Class Lecture method, which includes seminars, discussions, assignments and projects. (Audio-visual tools are used where necessary)

• Assignments-Types and Number with calendar:

According to the choice of respective teacher.

• Assessment and Examinations:

According to the University's Semester Rules.

Sr. No.	Elements	Weightage	Details
1	Midterm	35%	It takes place at the mid-point of the semester.
	Assessment		
2	Formative	25%	It is continuous assessment. It includes: Classroom
	Assessment		participation, attendance, assignments, and
			presentations, homework, attitude and behavior,
			hands-on-activities, short tests, quizzes etc.
3	Final	40%	It takes place at the end of the semester. It is mostly in
	Assessment		the form of a test, but owing to the nature of the course
			the teacher may assess their students based on term
			paper, research proposal development, field work and
			report writing etc.

Text Books

- 1. Casella, G., & Berger, R.L. (2008). *Statistical Inference*. Cengage Learning, New York, USA.
- Hogg, R.V., & Tanis E.A. (2009). *Probability and Statistical Inference* (7th ed.). Macmillan Publishing Company, New York.

Suggested Readings

- Hoel, P.G. (1984). Introductions to Mathematical Statistics (5th ed.). John Wiley and Sons, New York.
- 2. Hogg, R.M., McKean, J., & Craig, A.T. (2013). *Introduction to Mathematical Statistics*. Prentice Hall, New Jersey, USA
- 3. Lehman, E.L. (2003). *Theory of Point Estimation* (2nd ed.). John Wiley and Sons, N.Y
- 4. Mood, A.M., Graybill, F.A., & Boes, D.C. (2007). *Introduction to the Theory of Statistic*. McGraw Hill, New York, USA.
- Rao, C.R. (2001). *Linear Statistical Inference and its Applications* (2nd ed.). John Wiley and Sons, New York.